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Abstract

Effective explanations of video action recognition models should disentangle how
movements unfold over time from the surrounding spatial context. However, ex-
isting methods—based on saliency—produce entangled explanations, making it
unclear whether predictions rely on motion or spatial context. Language-based
approaches offer structure but often fail to explain motions due to their tacit
nature—intuitively understood but difficult to verbalize. To address these chal-
lenges, we propose Disentangled Action aNd Context concept-based Explainable
(DANCE) video action recognition, a framework that predicts actions through
disentangled concept types: motion dynamics, objects, and scenes. We define
motion dynamics concepts as human pose sequences. We employ a large lan-
guage model to automatically extract object and scene concepts. Built on an
ante-hoc concept bottleneck design, DANCE enforces prediction through these
concepts. Experiments on four datasets—KTH, Penn Action, HAA500, and UCF-
101—demonstrate that DANCE significantly improves explanation clarity with
competitive performance. We validate the superior interpretability of DANCE
through a user study. Experimental results also show that DANCE is beneficial
for model debugging, editing, and failure analysis. Our code is available at
https://jong980812.github.io/DANCE/

1 Introduction

Recent advances in video action recognition [56, 11, 28, 13, 32, 53, 30, 2] have led to impressive
performance across diverse benchmarks. To deploy such high-performing video models in real-world
applications, explaining their predictions becomes essential for ensuring trust, transparency, and
accountability [10, 20]. Despite this need, the decision-making processes of video action recognition
models remain largely opaque, and systematic approaches to explanation are still underexplored.
From a cognitive science perspective, humans interpret complex information more effectively when
it is presented in a structured format—i.e., broken down into meaningful and separable compo-
nents [36, 34, 35, 51]. Interpretability further improves when each component is expressed in a clear
and unambiguous manner [10, 55, 33]. Notably, humans perceive actions by separately analyzing
two distinct factors: (i) how movements evolve over time (temporal dynamics) and (ii) what phys-
ical context surrounds those movements, such as objects and scenes (spatial context) [17, 16, 27].
Therefore, to align with human reasoning process, a video explainable AI (video XAI) should explain
a model’s prediction in a structured way—explicitly disentangling and attributing its decisions to
temporal dynamics and spatial context.
Meanwhile, existing approaches in video XAI largely follow two strategies: extending image-based
feature attribution methods [15, 23, 42, 14, 46] across the time axis [50, 18, 31] or clustering spatio-
temporal tubelets to discover high-level concepts [26, 21, 43]. However, these methods do not
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Figure 1: Disentangled concepts speak louder than words. Spatio-temporal attribution methods
provide unstructured explanations that are often ambiguous to human users. Given a Baseball Swing
video, (a) visual explanations from 3D-saliency [50] and VTCD [26] fail to clarify whether the
prediction is driven by motion (e.g., torso twist), objects (e.g., jersey/helmet), or scene context
(e.g., baseball field). (b) Language-based approaches offer more structure but remain ambiguous for
motion, as it is tacit knowledge—intuitively understood but hard to verbalize. Verbal descriptions of
motion often lack clarity and are difficult to interpret. (c) In contrast, DANCE disentangles motion and
context to provide structured explanations. Pose sequences capture motion dynamics in an intuitive,
appearance-invariant form, while we clearly convey object and scene concepts via text.

disentangle temporal dynamics from spatial context in their explanations. Instead, they highlight
localized regions of input videos in an unstructured and entangled manner—making it difficult to
attribute predictions to specific types of evidence. For example, in Figure 1 (a), for the action Baseball
Swing, it remains unclear whether the model’s prediction is based on the twisting motion of the torso,
the appearance of the player (e.g., the jersey), or the scene (e.g., baseball field).
A potential direction for structured explanations is to use language-based approaches [38, 60, 39, 37,
1]. Language-based approaches could provide structured and human-readable text descriptions, as
illustrated in Figure 1 (b). While these methods can effectively capture spatial context or high-level
semantics, they often struggle to express motion dynamics clearly. This challenge arises because
motion dynamics often fall under the category of tacit knowledge—knowledge that is intuitively
understood and applied, but difficult to verbalize or explain explicitly [41]. As shown in Figure 1
(b), verbally describing the swinging motion of a torso is nontrivial, and even when verbalized, such
descriptions tend to be overly verbose and cognitively difficult for users to interpret.
To address the challenges of structured and motion-aware explanation, we propose Disentangled
Action aNd Context concept-based Explainable (DANCE) video action recognition framework. As
illustrated in Figure 1 (c), DANCE provides explanations based on three disentangled concept types:
(i) motion dynamics, (ii) object, and (iii) scene. To capture fine-grained temporal patterns, we define
motion dynamics concepts as human pose sequences. These pose sequences offer an appearance-
agnostic representation of motion, enabling users to intuitively understand how an action unfolds over
time without being distracted by irrelevant visual factors such as clothing or background. In parallel,
we define object and scene concepts as action-related elements extracted using a large language
model, allowing a model to incorporate spatial context concepts without manual annotation.
To ensure inherent explainability, DANCE adopts an ante-hoc design based on the concept bottleneck
framework [25]. We insert a concept layer between the backbone and the final classifier, enforcing
the model to first predict concept activations before predicting the final action label. The concept
layer comprises nodes for motion dynamics, object, and scene concepts. This disentangled design
ensures that action predictions are explicitly grounded in both dynamic (pose sequence-based) and
static (object and scene) concept types. As a result, explanations produced by DANCE are not only
faithful to the model’s reasoning but also well-aligned with human cognitive mechanisms.
To validate the effectiveness of DANCE, we conduct experiments on four video action recognition
datasets: KTH [45], Penn Action [61], HAA500 [9], and UCF-101 [49]. Results show that DANCE
significantly enhances explanation clarity by disentangling motion dynamics and spatial context,
while maintaining competitive recognition performance against a model without interpretability.
A user study further demonstrates that explanations generated by DANCE are more faithful and
interpretable compared to those of prior approaches. Extensive qualitative comparisons also highlight
the superior structure and transparency of DANCE’s explanations. Finally, we showcase the practical
utility of DANCE across several downstream tasks—including model debugging, editing, and failure
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case analysis —underscoring its broader potential for understanding and improving video recognition
models.

We summarize our major contributions as follows:

• We propose DANCE, a novel video XAI framework that provides structured and motion-
aware explanations by disentangling motion dynamics and spatial context concepts.

• We introduce a label-free pipeline that automatically discovers motion dynamics concepts
via clustering of human pose sequences and spatial context concepts through LLM querying.
The proposed pipeline allows DANCE to capture fine-grained motion patterns, objects, and
scenes without manual annotations.

• We conduct comprehensive evaluations across four datasets, assessing both explainability
and performance through a user study, qualitative comparisons, and ablation studies. We
further demonstrate the practical utility of DANCE in model debugging and editing.

2 Related Work
Video action recognition. The video action recognition task is classifying human actions from a
temporally trimmed input video. Early approaches, such as two-stream CNNs [48], 3D CNNs [54, 12,
13], and temporal shift modules [32], jointly encode spatial and temporal features to capture motion
and context. More recently, transformer-based architectures [3, 40, 11, 53, 28, 2] have achieved
substantial performance gains, largely due to large-scale pretraining. Despite these advances, the
decision-making processes of most video action recognition models remain opaque, as predictions
are made through complex, non-interpretable feature interactions. In this work, we propose DANCE
that predicts actions based on disentangled, human-interpretable concepts, thus making the model’s
reasoning process more transparent and well-aligned with human cognition.
Explainable video action recognition. Explaining the decision-making process of video action
recognition models remains a relatively under-explored area. We can categorize existing methods into
post-hoc explanation approaches—such as feature attribution [50, 31, 18]—and concept discovery
methods [21, 26, 43]. These approaches typically use attribution or optimization techniques to identify
input regions (e.g., pixels or spatio-temporal tubelets) that contribute most to the model’s prediction.
As a result, the explanations they produce are often unstructured and entangled, making it difficult to
attribute predictions to distinct types of reasoning, such as motion dynamics versus spatial context.
Moreover, optimization-based methods [21, 26, 43] require additional computational cost, as they
need an optimization phase every time for generating an explanation. In contrast, we propose an
ante-hoc framework that explicitly disentangles temporal dynamics and spatial context concepts to
produce structured, human-aligned explanations. Because DANCE is inherently explainable by design,
it can generate interpretable explanations in a single forward pass, without a post-hoc optimization.
Disentangled/Decomposed explanations. Recently, there have been efforts to provide explanations
disentangled into interpretable components in the image domain [62, 24, 4, 8, 25, 38, 60, 39, 47].
Concept bottleneck models (CBMs) insert a concept layer between the backbone and the final
classifier, forcing predictions to be made explicitly through disentangled human-interpretable con-
cepts [25, 38, 60, 39, 47]. Other approaches disentangle what concepts influence the prediction and
where the concepts occurs [52, 1, 4]. A separate line of work addresses the limitations of attribution-
based explanations—entangled attribution maps—by disentangling intermediate-layer representations
into concept subspaces [8] or selecting a compact set of informative attribution regions [5]. While we
also aim to provide disentangled explanations, our work differs in that we tackle the under-explored
problem of explainable video action recognition. To the best of our knowledge, DANCE is a pioneer-
ing work in video XAI by explicitly disentangling motion dynamics and spatial context concepts,
enabling structured, interpretable, and human-aligned explanations for video model decisions.

3 DANCE

We introduce DANCE, an explainable video action recognition framework that produces structured
and motion-aware explanations for its predictions. As illustrated in Figure 2, DANCE explains
each prediction using three types of disentangled concepts: (i) motion dynamics, (ii) objects, and
(iii) scenes. To capture fine-grained temporal patterns, we define motion dynamics concepts as
representative human pose sequences extracted from training videos. These pose sequences offer
appearance-agnostic representations of temporal motion, allowing users to clearly understand how
an action unfolds over time—without being distracted by visual factors such as clothing, objects, or
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Figure 2: Overview of DANCE. Given an input video, DANCE first extracts video features using a
pretrained video backbone encoder. Then, three disentangled concept layers project the video features
onto their own concept space-motion dynamics, object, and scene-producing disentangled activations.
The interpretable classification layer linearly combines these concept activations to predict the action
class. By explicitly disentangling concept types, DANCE provides structured explanations that better
align with how humans perceive actions by separating motion dynamics from the spatial context.

background. In parallel, we use a large language model (LLM) to extract spatial context concepts,
identifying relevant objects and scenes associated with each action.

To ensure a transparent prediction, we adopt an ante-hoc design based on the concept bottleneck
framework [25, 38]. As shown in Figure 2, we insert a concept layer between the backbone and the
final classifier. Given a video, DANCE first predicts the activation of disentangled concepts, then uses
these activations to produce the final action prediction. Through our disentangled concept bottleneck
design, we ensure that an explanation from DANCE is structured and motion-aware. The remainder of
this section is organized as follows. We introduce the concept bottleneck architecture in Section 3.1,
detail our concept discovery process in Section 3.2, present training procedures in Section 3.3.

3.1 Preliminary: Concept Bottleneck Model
Let us denote a training dataset as D = (Vi,ci,yi)

N
i=1, where Vi is the i-th input video, ci ∈ {0,1}M is

a binary vector indicating the presence of M concepts, and yi ∈ {0,1}K is a one-hot vector indicating
the ground-truth action label among K classes. Given a training sample (Vi,ci,yi), we first extract
a D-dimensional video-level feature vector xi = f (Vi) ∈ RD using a pre-trained video backbone
encoder f (·). We then project xi into M concept activations using a linear concept layer g(·;WC)
parameterized by weights WC ∈ RM×D: zi = g(xi;WC) ∈ RM . Then, a linear classifier h(·;WA) with
a softmax activation predicts an action label based on the concept activations: ŷi = h(zi;WA) ∈ RK .
Unlike prior works [25, 38], DANCE explicitly disentangles three types of concepts—motion dynam-
ics, objects, and scenes—to provide structured and more intuitive explanations. To achieve this, we
partition the parameters of the concept layer WC into three disjoint parameters: WC = [Wm

C ;Wo
C;Ws

C],
where Wm

C ∈ RMm×D, Wo
C ∈ RMo×D, and Ws

C ∈ RMs×D correspond to the parameters for motion
dynamics, object and scene concepts, respectively. Here, Mm, Mo, and Ms denote the number of
motion dynamics, object and scene concepts, respectively. We represent motion dynamics concepts
using 2D human pose sequences, which explicitly capture how the human body moves over time in
an appearance-agnostic manner. For both object and scene concepts, we use intuitive text descriptions,
e.g., baseball bat, tennis court, that reflect the spatial context associated with each action.

3.2 Concept Discovery
For each concept type, we first discover a representative set of concepts using only the training videos
from the target dataset. We then automatically annotate each video with the presence or absence of
these concepts, without requiring any human supervision.

3.2.1 Motion Dynamics Concept
As shown in Figure 3 (a), we extract 2D pose sequences from all training videos and apply clustering to
discover representative motion dynamics concepts. This allows us to build a compact and interpretable
vocabulary of movement patterns.
Key clip selection. In video sequences, not all clips are equally informative [22, 7, 6]; only a few
temporally localized segments—such as wind-up, stride, or release in a baseball pitch—contain
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Figure 3: Concept discovery and labeling process of DANCE. (a) Given a training video, we extract
S key clips with length L centered at keyframes identified by a keyframe detection algorithm. We then
apply a 2D pose estimator to obtain human pose sequences from these key clips. By clustering all
pose sequences across the training set, we cluster them to define each cluster as a motion dynamics
concept. (b) For each video, we derive binary motion dynamics concept labels by aggregating the
cluster assignment tensor across its key clips. (c) To discover object concepts, we query GPT-4o [19]
with prompts containing action class names, yielding a set of object concepts for the dataset. (d)
Given a video and the object concept set, we compute concept pseudo labels using a vision-language
dual encoder. Specifically, we obtain a concept pseudo label vector by multiplying the object concept
embedding matrix with the video embedding vector. We can obtain scene concept labels analogously.

distinctive motion cues critical for action recognition. To focus on such informative segments, we
extract pose sequences from key clips only. We first detect keyframes by running an off-the-shelf
method * using pixel value differences. For each selected keyframe, we extract a short video clip
Vs

i of fixed length L centered at that frame, where s ∈ {1, · · · ,S} is the key clip index. This targeted
sampling strategy allows us to concentrate the concept discovery process on primitive, discriminative
motion patterns that are frequently shared across different instances of the same action class—and in
some cases, across classes. Please refer to the supplementary materials for more details.
Pose sequence extraction. For each key clip Vs

i , we apply a 2D pose estimation model [59] to every
frame to obtain a pose sequence Ps

i ∈RL×J×2, where J is the number of joints. To ensure high-quality
motion dynamics representations, we filter out pose sequences with low average joint confidence or
large discontinuities in joint coordinates between consecutive frames. For further implementation
details, please refer to the supplementary materials.
Concept discovery. To discover motion dynamics concepts, we first aggregate all pose sequences
from the training videos into a unified set: P=

⋃N
i=1

⋃S
s=1 Ps

i , where Ps
i denotes the pose sequence

from the s-th key clip of the i-th video. To group similar motion patterns, we apply a clustering
algorithm, e.g., FINCH [44], to the aggregated set P, as illustrated in Figure 3 (c). We flatten each
pose sequence into a feature vector before clustering. We define each resulting cluster as a distinct
motion dynamics concept and assign it a unique concept index k ∈ {1, . . . ,Mm}, where Mm is the total
number of motion dynamics concepts. Based on the clustering results, we construct a binary cluster
assignment tensor A = [ai,s,k] ∈ {0,1}N×S×Mm , where each element ai,s,k is defined as:

ai,s,k =

{
1, if Ps

i belongs to cluster k,
0, otherwise.

(1)

Concept labeling. For each training video Vi, we assign motion dynamics concept labels by
checking whether any of its pose sequences Pi belong to a given cluster k:

cm
i,k = I(

S

∑
s=1

ai,s,k), (2)

*https://github.com/joelibaceta/video-keyframe-detector
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where I(·) is the indicator function. As a result, we obtain a binary motion dynamics concept label
vector cm

i ∈ {0,1}Mm indicating which motion dynamics concepts are present in video Vi. Note that
this labeling process is entirely unsupervised, requiring no manual annotations.

3.2.2 Object and Scene Concept

Concept Discovery. To discover intuitive and clear concepts in an unsupervised manner, we
leverage a large language model, as illustrated in Figure 3 (d). For each action class, we query
GPT-4o [19] with two prompts: i) “For the <action class>, list the most important physical objects
that commonly appear when this action occurs.” and ii) “List the most common places or background
scenes where <action class> typically occurs. Do not include objects or equipment”. These prompts
yield a diverse and semantically meaningful set of candidate object and scene concepts associated
with each action. To improve concept quality and reduce redundancy, we follow prior work [38] by
applying post-processing filters—removing overly long phrases, near-duplicates, and concepts that
are overly similar to the action class name. For more implementation details and examples, please
refer to the supplementary materials.
Concept Pseudo Labeling. To avoid manual concept annotation, we employ a vision-language dual
encoder [57] to generate concept pseudo labels for each training video Vi. Let EV (·) and ET (·) denote
the video and text encoders of the dual encoder, respectively. We first obtain a video embedding
vector EV (Vi) ∈RD, where D is the shared embedding dimension. We then encode the object concept
set O obtained from GPT-4o using the text encoder to obtain an object concept embedding matrix
ET (O)∈RMo×D, where Mo denotes the number of object concepts. Given object concept embeddings
ET (O) and the video embedding EV (Vi), we compute the object pseudo concept label vector c̃o

i as:

c̃o
i = ET (O)EV (Vi) ∈ [0,1]Mo . (3)

Note that c̃o
i is a soft label. We can obtain scene concept labels c̃s

i ∈ [0,1]Ms analogously using the
scene concept embedding matrix ET (S) ∈RMs×D and the video embedding EV (Vi). For more details,
please refer to the supplementary materials.

3.3 Training

We freeze the pretrained video backbone encoder f (·) and train the concept layer g(·;WC) and the
final classification layer h(·;WA) in two separate stages, using concept labels derived in Section 3.2.
For brevity, we omit the batch dimension and the sample index i in the following descriptions.
Motion dynamics concept layer. Since the motion dynamics label cm

i ∈ {0,1}Mm , derived from
(2), is a multi-label binary vector rather than a one-hot vector, we train the motion dynamics concept
parameters using the binary cross-entropy loss. Given the motion dynamics concept activations
zm = g(x;Wm

C ), we apply the sigmoid activation σ(·) to each element and define the loss as:

Lm =− 1
Mm

Mm

∑
k=1

[cm
k log(σk (zm))+(1− cm

k ) log(1−σk (zm))]. (4)

Here, σk(zm) denotes the k-th element of σ(zm).
Object and scene concept layer. To train the object concept layer, we follow prior work [38]
and apply the cosine cubed loss between the pseudo label vector c̃o (derived from (3)) and the
object concept activations zo = g(x;Wo

C). The cosine cubed loss emphasizes directional alignment
between the predicted and target concept representations while being invariant to scale. For additional
details, we refer readers to the methodology described in [38]. We train the scene concept layer in an
analogous manner using the corresponding pseudo labels and activations.

Lo =− zo3 · c̃o3∥∥zo3
∥∥

2 ·
∥∥∥c̃o3

∥∥∥
2

. (5)

Interpretable classifier. We freeze the learned concept layers and train a final linear classifier that
predicts actions solely based on the concept activations. By enforcing predictions to be made through
disentangled and interpretable concepts, we promote transparent and structured explanations. Let
z = [zm;zo;zs] denote the concatenated motion dynamics, object, and scene concept activations. We
train the classifier using the standard cross-entropy loss between the ground-truth action label y and
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Figure 6: Interpretability of DANCE. (a) We present user study results from pairwise comparisons
evaluating the interpretability of DANCE against three video XAI baselines: (i) a concept bottleneck
model using spatio-temporal concepts generated by GPT-4o [19], (ii) VTCD [26], a spatio-temporal
saliency-based explanation method, and (iii) a concept bottleneck model using spatio-temporal
concepts from UCF-101 attributes [49]. (b) We report user study results comparing the interpretability
of three concept types: (i) language-based concepts generated by GPT-4o, (ii) expert-defined concepts
based on UCF-101 attributes [49], and (iii) our proposed motion dynamics concepts.

the action prediction ŷ = h(z;WA), with a regularization term to enhance interpretability [58, 38]:

Lcls =− 1
K

K

∑
k=1

yk log(ŷk)+λ [(1−α)
1
2
∥WA∥F +α ∥WA∥1,1], (6)

where ŷk denotes the k-th element of ŷ, ∥·∥F represents the Frobenius norm, ∥·∥1,1 is the element-wise
ℓ1 norm, and λ and α are balancing hyperparameters.

4 Experimental Results
In this section, carefully design and conduct rigorous experiments to answer the following research
questions: (1) Does DANCE generate explanations that are easy for humans to interpret in the context
of action prediction? (Section 4.1) (2) Can DANCE detect changes in the temporal domain, such
as reversed input sequences? (Section 4.1) (3) What is the performance trade-off, if any, when
interpretability is introduced into a previously non-interpretable model? (Section 4.2) (4) Can DANCE
be effectively used for model debugging and editing? (Section 4.3) Please refer to the supplementary
materials for the dataset and implementation details.

4.1 Analysis
Concept contribution. We define the concept contribution as the product of a concept activation and
the concept weight associated with the predicted class and we use this term consistently throughout
the paper. To visualize a motion dynamics concept, we select the pose sequence closest to the cluster
medoid and use it as the representative example. Due to space constraints, we visualize only a few
examples in the main paper. We put additional visualizations in the supplementary material.
Sample-level explanation. In Figure 4, we visualize the top-3 contributing concepts along with the
input video. In Figure 4 (a), DANCE leverages the motion concepts “lowering” and “lifting”, along
with the object concept “Bench”, which together support the correct prediction. In contrast, as shown
in Figure 4 (b), saliency-based methods [46, 50] produce spatio-temporally entangled explanations,
making it unclear whether the model bases its decision on the object itself, i.e., “barbell” or its motion,
i.e., up-down movement when predicting Bench Press.
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Figure 7: Sanity check of DANCE. We compare predic-
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original video, and (ii) the same video played backward.
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Figure 8: Failure case analysis using
DANCE. With intuitive explanations,
DANCE can help failure case analysis.

Model-level explanation. In Figure 5, we visualize concept-to-class weights for pairs of similar
action classes using Sankey diagrams. The thickness of each edge represents the relative contribution
weight. DANCE provides the model’s decision basis, helping users understand how it discriminates
between similar actions. For example, in Figure 5 (a), Basketball Shoot and Volleyball Set share
common motion concepts (shown in light khaki), while DANCE distinguishes between them using
subtle motion differences (shown in pink) and the object concept, “Volleyball Poles.”

Interpretability of DANCE. To evaluate the effectiveness of DANCE in explaining model pre-
dictions, we conduct a user study comparing it against three baseline explainable video action
recognition methods: (i) a CBM using entangled spatio-temporal concepts generated by GPT-4o [19],
(ii) VTCD [26], a spatio-temporal saliency-based method, and (iii) a CBM using spatio-temporal
concepts from UCF-101 attributes [49]. In each question, we ask each participant a pairwise compar-
ison question, by showing a video along with explanations from DANCE and one of the baselines:
“Which explanation helps you better understand why the model predicted the action?” We collect
responses on a five-point Likert scale, ranging from “DANCE is much better” to “the other method is
much better.” As shown in Figure 6 (a), more than 70% of the responses fall into “ours is much better”
or “ours is slightly better” categories across all three pairwise comparisons. These results showcase
that users perceive DANCE as more intuitive and trustworthy than (i) language-based explanations,
(ii) unstructured saliency-based attributions, and (iii) expert-defined concepts.

Interpretability of the proposed motion dynamics concept. We conduct a user study evaluating
the interpretability of three CBMs using the following temporal concepts: (i) language-based concepts
generated by GPT-4o [19], (ii) expert-defined concepts based on UCF-101 attributes [49], and (iii)
our proposed motion dynamics concepts. For each question, we show each participant a video along
with the top-1 concept used by a model employing one of the three compared concept types. Then
we ask the participant to answer the question: “How well does the given concept match the actions
or motions shown in the video?” We collect the response on a five-point Likert scale, where higher
scores indicate stronger perceived alignment and interpretability. As shown in Figure 6 (b), our motion
dynamics concept achieves the highest average score of 4.3, with 89.7% of participants rating it 4 or 5.
In contrast, language-based and expert-defined concepts receive lower average scores of 2.3 and 3.4,
respectively. These results indicate that the proposed motion dynamics concept is significantly more
intuitive and aligned with human perception of motion, providing more interpretable explanations.
For more study details, please refer to the supplementary material.

Sanity check. Here, we check the sanity of DANCE from the perspectives of model behavior and
explanation quality. In Figure 7, we compare the predictions and top-2 contributing concepts of both
methods for (i) the original video and (ii) the same video played backward. DANCE correctly predicts
Bowing FullBody for the original video leveraging the visualized motion dynamics concepts. For
the backward video, DANCE predicts Burpee by leveraging “standing up” like motions as visualized,
reflecting the model’s sensitivity to temporal direction. With the sanity check, we validate that (i) the
model is sensitive to motion dynamics as intended, and (ii) explanations by DANCE are interpretable.

Failure case analysis. Thanks to the transparent and intuitive nature of DANCE, we can also analyze
the reason behind incorrect predictions as shown in Figure 8. DANCE explains that the misprediction
of Push up is because of high contributions from downward body movement. Such interpretability
enables targeted model debugging, as further demonstrated in Section 4.3.
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Table 1: Video action recognition performance. We report the Top-1 accuracy (%) of the baselines
with and without interpretability as well as DANCE, all using the same backbone encoder [53].

Method KTH [45] Penn Action [61] HAA-100 [9] UCF-101 [49]

Baseline w/o interpretability 89.7 97.8 73.5 88.4

CBM [25] w/ UCF-101 attributes - - - 86.8
LF-CBM [38] w/ entangled language concepts 87.4 96.3 66.5 85.5
LF-CBM [38] w/ disentangled language concepts 89.9 97.7 65.3 83.7
DANCE 91.1 98.1 70.7 87.5

Intervention

𝑡

2.2
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0.7
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𝑡

Original Pred : 
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Figure 9: Sample-level interven-
tion. Deactivating the irrelevant
concept leads to fixing the mis-
prediction to a correct predcition.
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𝑡Cross-domain video
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In-domain video

84.0% → 86.5%
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𝑡
𝐖: 0.0 → 0.8
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𝑡

Relevant concept
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𝑡

Joint intervention:77.7% → 82.0% (+4.3 points) 

Figure 10: Cross domain class-level intervention. Fixing zero
weights from relevant concepts to classes result in 4.3 point
accuracy improvement under severe domain shift, i.e., UCF-
101 [49] → UCF-101-SCUBA [29], without retraining.

4.2 Performance Evaluation
Interpretability and performance do not always trade-off. We compare DANCE with a baseline
model without interpretability, as shown in Table 1. DANCE achieves slightly higher accuracy on
KTH and Penn Action, while showing a modest drop of 2.8 points on HAA-100 and 0.9 points on
UCF-101. These results indicate that DANCE can deliver intuitive and structured explanations without
substantially compromising classification performance—and in some cases, even improving it.

Clearer concepts improves performance. We further investigate whether the clarity of concept
representations affects model performance. To this end, we compare DANCE with the following
baselines: (i) concept bottleneck model with UCF-101 attributes [49], (ii) a label-free concept bot-
tleneck model [38] using spatio-temporally entangled concepts generated by GPT-4o, and (iii) a
variant of the label-free concept bottleneck model that uses the same object and scene concepts
as DANCE, but uses GPT-4o-generated temporal concepts. Across all datasets, DANCE consistently
outperforms these baselines, demonstrating that employing clearer and disentangled concept repre-
sentations—particularly for motion dynamics—can lead to improved action recognition performance.

4.3 Model Editing
Here, we demonstrate the utility of DANCE in debugging itself by analyzing sample-level concept
contributions in misclassifications and inspecting class-level weights.

Sample-level intervention. In Figure 9, we illustrate how a user can intervene the model by
removing a specific concept in the case of misclassification. For example, in Figure 9 (a), the model
initially predicts Table Tennis Shot, largely influenced by the scene-level concept “Table tennis club.”
When this concept is deactivated, the model leverages motion dynamics concepts and correctly
classifies the input as Cricket Shot. The results demonstrates that DANCE supports fine-grained,
transparent control over predictions, allowing users to actively adjust model behavior.

Cross domain class-level intervention. In Figure 10, we demonstrate class-level intervention
using DANCE. This experiment evaluates whether such adjustments can resolve performance drop
caused by severe distribution shift. We evaluate on UCF-101-SCUBA [29], a variant of UCF-101 [49]
where test video backgrounds are altered to induce a domain shift. As shown in Figure 10, for the
Volleyball Spiking class, the model activates a relevant motion dynamics concept but ignores it due to
a zero weight. By assigning a weight of 1.0 to this concept, we correct 98 misclassifications with
only one additional error, significantly improving overall accuracy by 2.5 points (84.0% → 86.5%).
Further adjusting weights for the Golf Swing and Tennis Swing classes result in a 4.3 point accuracy
improvement (77.7% → 82.0%). These findings highlight DANCE’s ability to support post hoc model
debugging and performance recovery under severe domain shifts, without retraining.
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5 Conclusions
In this paper, we propose DANCE to address the challenge of explaining video action recognition
models in a structured and motion-aware manner. DANCE grounds its predictions in three human-
interpretable concept types—motion dynamics, objects, and scenes—enabling cognitively aligned
and transparent explanations. This design facilitates intuitive understanding of model behavior by
explicitly separating temporal and spatial reasoning. Through extensive experiments and practical
use cases, we show that DANCE delivers clearer and more faithful explanations while maintaining
competitive recognition performance. Moreover, DANCE supports effective model editing—even
under severe domain shifts—without requiring retraining. We believe our work offers valuable
insights to the XAI and video understanding communities and will help inspire future research.
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